
MATRIX TECHNIQUES

PAUL L. BAILEY

Abstract. This document collects matrix techniques for solving problems

in linear algebra. None of these techniques should be applied without an

understanding of why they work.

1. Elementary Invertible Matrices

The identity matrix is denoted by I.
The elementary invertible matrices are

• E(i, j; c) is I except aij = c;
• D(i; c) is I except aii = c;
• P (i, j) is I except aii = ajj = 0 and aij = aji = 1.

The inverses of the elementary invertible matrices are
• E(i, j; c)−1 = E(i, j;−c);
• D(i; c)−1 = D(i; c−1);
• P (i, j)−1 = P (i, j).

Let E be an elementary invertible matrix. Multiplying on the left of A to
form EA has the indicated effect on the rows of A. Multiplying on the right of
A to form AE has the analogous effect on the columns of A.

E(i, j; c) Multiply the jth row by c and add to the ith row

D(i; c) Multiply the ith row by c

P (i, j) Swap the ith row and the jth row
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2. Gaussian Elimination

Let A denote the original matrix.
Let B = OA be the result of forward elimination, where O is invertible.
Let C = UA be the result of backward elimination, where U is invertible.
Let M be the modified augmented matrix obtained by solution readoff.
The basic columns of B or C are the columns containing the pivots.
The free columns of B or C are the other columns.
The basic columns of A or M correspond to the basic columns of B or C.
The free columns of A or M correspond to the free columns of B or C.
Let r be the number of basic columns of B or C.
Let k be the number of free columns of B or C.
The basic rows of O or U are the first r rows.
The free rows of O or U are the last m − r rows.

Forward Elimination (1) Start with the first nonzero column.
(2) If the top entry in the column is zero, permute with a lower row so

that the top entry is nonzero (use P ).
(3) Eliminate all entries below this one (use E).
(4) Repeat this process, disregarding the current top row and all rows

above it.

Backward Elimination (1) Make all pivots equal to one (use D).
(2) Starting from the right, working upward then leftward, make all

entries above a pivot equal to zero (use E).

Solution Readoff (1) insert a zero row at row i for every free variable xi;
(2) multiply each free column by −1;
(3) add ei to each free column;
(4) the particular solution is now the augmentation column;
(5) the homogeneous solution is now the span of the free columns.
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3. Finding a Basis for Fundamental Subspaces

The four fundamental subspaces associated to A are the column space col(A),
the row space row(A), the kernel ker(A), and the kernel of the transpose ker(A∗).

The primary techniques for finding a basis of these spaces are:
(F1) The basic columns of A are a basis for col(A).
(F2) The nonzero rows of B or C are a basis for row(A).
(F3) The free columns of M are a basis for ker(A).
(F4) The free rows O or U are a basis for ker(A∗).
These secondary techniques are implied by the primary technques:

(F5) The basic columns of A are a basis for row(A∗).
(F6) The nonzero rows of B or C are a basis for col(A∗).
To avoid backward elimination, row reduce A∗ instead of A and apply tech-

niques (F2) and (F4) instead of (F1) and (F3).

4. Finding a Basis for a Span

Let X = {w1, . . . , wn} ⊂ Rm and let W = span(X).
Form the m × n matrix A = [w1 | · · · | wn].
Reduce A and apply (F1); a basis for W is a basis for col(A).
Reduce A∗ and apply (F2); a basis for W is a basis for row(A∗).

5. Test for Linear Independence

Let X = {w1, . . . , wn} ⊂ Rm.
If n > m, then X is dependent.
Form the m × n matrix A = [w1 | · · · | wn].
Reduce A; if n = r, then X is independent, otherwise it is not.

6. Test for Spanning

Let X = {w1, . . . , wn} ⊂ Rm.
If n < m, then X does not span Rm.
Form the m × n matrix A = [w1 | · · · | wn].
Reduce A; if m = r, then X spans Rm; otherwise it does not.

7. Test for a Basis

Let X = {w1, . . . , wn} ⊂ Rm.
If n > m, then X is not a basis.
If n < m, then X is not a basis.
If n = m, then X is a basis if and only if X spans.
If n = m, then X is a basis if and only if X is independent.
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8. Finding the Inverse

If A is not square, it cannot be invertible.
Reduce A to B.
If r < n, then A is not invertible.
Reduce B to C; then A−1 = U .

9. Finding the Determinant I

If A is not square, the determinant of A is undefined.
Select any row or column and expand along it.

Along the ith row:

det(A) =
n∑

j=1

(−1)j−1aijdet(Aij).

Along the jth column:

det(A) =
n∑

i=1

(−1)i−1aijdet(Aij).

Here, Aij is the ijth minor matrix of A.

10. Finding the Determinant II

If A is not square, the determinant of A is undefined.
Reduce A to B via forward elimination using E and P but not D.
If r < n, then det(A) = 0.
If r = n, then B is upper triangular and det(B) is the product of the diagonal

entries.
Thus det(A) = (−1)pdet(B), where p is the number of P matrices used in

forward elimination.

11. Finding Eigenvalues and Eigenvectors

Let A be an n × n matrix.
The characteristic polynomial of A is

χA(λ) = det(A − λI);

this is a polynomial of degree n.
Then a is an eigenvalue of A if and only if a is a root of χA(λ).
To find eigenvectors associated to a, find a basis for ker(A − aI).

12. Test for Diagnolizability

Let A be an n × n matrix.
Then A is diagonalizable if and only if Rn has a basis of eigenvectors of A.
To diagonalize A, find a basis of eigenvectors and construct the matrix C

which has these eigenvectors as columns.
Then B = C−1AC is diagonal.
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